Chapter 6 - Study Guide
Investigations in Measurement and Decimal Multiplication \& Division
1.) Multiply the numbers.
a) $2.8 * 10^{2}=280.0$
b) $2.8 * 10^{3}=2800.0$
c) $2.8 * 10^{4}=28000.0$
2.) Where did you place the decimal point in your answer to $2.8 * 10^{3}$ ? How did you know to place it there?
We moved the decimal 3 places to the right, the same amount as the exponent
3.) Divide the numbers.
a) $14.3 \div 10^{2}=0.143$
b) $14.3 \div 10^{3}=0.0143$
c) $14.3 \div 10^{4}=0.00143$
4.) Where did you place the decimal point in your answer to $14.3 \div 10^{4}$ ? How did you know to place it there?
We moved the decimal 4 places to the left, the same amount as the exponent
5.) Convert between millimeters ( mL ) and liters ( L ) to complete the "What's My Rule?" table. Then write a rule using a power of 10 in exponential notation.

6.) Lisa is conducting an experiment for a science project. She is creating a mixture that requires 1.8 liters to complete. She needs 50 milliliters to have enough of the mixture. How much of the mixture does she currently have?

$$
\text { Answer: } 1750 \mathrm{~mL} \quad 1.8 \mathrm{~L}=1800 \mathrm{~mL} \quad \begin{gathered}
1800 \\
\hline 1750 \mathrm{~mL}
\end{gathered}
$$

7.) Use an estimate to place the decimal point in each product.
a) $38.4 * 6.1=234.24 \quad 40 \times 6=240$
b) $2.78 * 14.6=40.588 \quad 3 \times 15=45$
c) Explain how you determined where to place the decimal point in the problem:

$$
38.4 * 6.1=23424
$$

We rounded both numbers in the equation and multiplied to get a product. Using our estimated product, we placed the decirinat in a spot 2 that made sense and was close to our estimate

Solve the problem.
8.) $14.7 * 3.2=$ $\qquad$
147
142
$\times \quad 394$
$\begin{array}{r}4410 \\ \hline 47.04\end{array}$
9.) $26.8 * 37.3=$ $\qquad$
$\begin{array}{r}268 \\ \times \quad 373 \\ \hline 804 \\ +\quad 18760 \\ 80400 \\ \hline 99964\end{array}$

$$
\begin{array}{r}
373 \\
\times 804
\end{array}
$$

$$
\frac{80400}{999.64}
$$

10.) Explain how you solved the problem $14.7 * 3.2$ ignore the deamal and multiply $147 \times 32$ traditionally. with the answer we get, we then look at the number of places behind decimals in the original problem, and place the decimal in the answer to mater the amount.
11.) Make an estimate. Then divide as if the dividend were a whole number. Use your estimate to place the decimal point in the answer.
$6.71 \div 2=$ $\qquad$ 3.35 Estimate: $\qquad$ $8 \div 2=4$

OR

Divide the traditional method and place the decimal as we learned in class.

$$
\begin{array}{r}
3.35 \\
2 \sqrt{6.71} \\
-6.1 \\
\hline 07 \\
-6 \downarrow \\
\hline-11 \\
-10
\end{array}
$$

12.) Write an equivalent problem that has a whole number divisor. Then solve the equivalent problem and complete the number sentence.
$4.8 \div 0.6=8$
Equivalent Problem: $48 \div 6=8$

OR

Use the traditional method and move the decimal point in the divisor and the dividend.
Then solve the problem.



13.) a) A rectangular one - story house covers an area of 2,600 square feet. The ceilings are 9 feet high. What is the volume of the interior of the house?

Number model: $\qquad$ $\times 9$
volume: 23,400 cubic feet

$$
\begin{aligned}
& V=B \times h \\
& V=2600 \times 9
\end{aligned}
$$

b) The owners added a second floor to the house. The second floor is 60 feet long and $2 \theta$ feet wide with ceilings that are 8 feet tall. What is the volume of the second floor?

Number model: $\qquad$ $60 \times 20 \times 8$

Volume of $2^{\text {nd }}$ floor: $\square$ Cubic feet

$$
V=l \times \omega \times h
$$

c) What is the total volume of the interior of the house (the whole house)?

Number model: $23,400+9,600$
Volume of the whole house: 33000 cubic feet
14.) Solve the problem.
a) $6.7 * 4.5=$ $\qquad$

b) $12.4 * 3.8=$ $\qquad$
124

c) $4.231 * 3.5=$ $\qquad$

$$
\begin{array}{r}
4231 \\
\times \quad 35 \\
\hline 21155 \\
+126930 \\
\hline 14.8085
\end{array}
$$

d) $5.12 * 2.7=$ $\qquad$

15.) Luca is starting a rock collection. He collects unusual rocks wherever he can find them. He wants to know how different rock sizes compare to their weights, so he measures the weights of his 10 favorite rocks and recorded the results below.

Rock Weights (ounces)

| $5 \frac{3}{4}$ | $6 \frac{1}{2}$ | $7 \frac{1}{4}$ | $7 \frac{3}{4}$ | $5 \frac{1}{2}$ | $8 \frac{1}{4}$ | $7 \frac{3}{4}$ | $5 \frac{1}{4}$ | $7 \frac{3}{4}$ | $6 \frac{1}{4}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

a) Complete the line plot using Luca's data. Remember to add a title and label.

b) What is the most common weight of the rocks in his collection?

c) What is the combined weight of the five heaviest rocks?

Number model: $8 \frac{1}{4}+7 \frac{3}{4}+7 \frac{3}{4}+7 \frac{3}{4}+7 \frac{1}{4}$
The combined weight is: $38 \frac{3}{4} \quad$ ounces
d) What is the difference between the heaviest and lightest rocks?

Number model: $8 \frac{1}{4}-5 \frac{1}{4}$
The difference in weight is: $\qquad$ ounces

